Observations (3): Satellite Radiance Data Assimilation

Zhiquan (Jake) Liu

Prediction, Assimilation, and Risk Communication Section Mesoscale & Microscale Meteorology Laboratory National Center for Atmospheric Research

MPAS-JEDI Tutorial, NCU, 25-26 October, 2023

Outline

- Principle of satellite measurements
- Radiative Transfer
- Variational Bias Correction and All-sky radiance DA
- Radiance DA setting with MPAS-JEDI

Environmental monitoring satellites

Polar-orbiting satellites vs. Geostationary satellites

AMV from Geostationary satellites

ECMWF Data Coverage (All obs DA) - GRAD 05/Jul/2015; 06 UTC Total number of obs = 483826

Polar-orbiting satellites

ECMWF Data Coverage (All obs DA) - AMSU-A 05/Jul/2015; 06 UTC Total number of obs = 667314

ECMWF Data Coverage (All obs DA) - GPSRO 05/Jul/2015; 06 UTC Total number of obs = 15867

GNSS Radio Occultation

Global forecast improvement over time at ECMWF

A – Assimilated; P – Passively monitored; E – Under evaluation; X – Failed or data excluded due to quality/transmission issues; - All-sky treatment Changes since ITSC-23 are highlighted through orange shading.

Satellite	Present orbit position (LTAN, approx.)	MW temperature sounder	MW humidity sounder	MW imager	IR broadband sounder or imager	IR hyper- spectral sounder
NOAA-15	19:30	A č	Х		Х	
NOAA-18	22:30	A Č	Х		х	
NOAA-19	20:30	A Č	A کُ ⁽)،		Р	
NOAA-20	13:30	А	А			А
NOAA-21	13:30	E	E			
Aqua	13:30	x	Х			А
S-NPP	13:30	А	А			А
Metop-B	21:30	A స్టో	A స్టో		х	А
Metop-C	21:30	A Č	A స్టో			А
FY-3C	19:00	х	A č	Х		
FY-3D	14:00	P Č	A స్టో,	Р 🔆 & Х		Е
FY-3E	17:30	E Č	A Č			
DMSP-F17	18:30		A Č	A کې		
DMSP-F18	16:00		A Č	Р 🖏 & Е		
GCOM-W1	13:30			A کې		
GPM	Mid-incl.		A č	A ද්?		
Meteosat-9	45.5°E				А	
Meteosat-11	0 ⁰				А	
GOES-16	75.2°W				А	
GOES-18	137°W				А	
Himawari-9	140.7°E				А	
FY-4A	104.7°E					E
FY-4B	133°E					E

NCAR UCAR Current status (2023) of satellite radiance DA at ECMWF

Niels Bormann, ITSC-24

Satellite instruments/sensors

Types of sensors

- Passive
- Active
- Radio Occultation

Scan strategies and viewing geometry affect coverage and field-of-view (FOV) resolution

cross-track scan

 Resolution degrades toward the edge of the swath because the viewing angle changes across the swath

conical scan

- Constant ground resolution
- Generally narrower swaths than cross-track scan swaths

What do satellite instruments measure?

• Satellite passive sensors observe radiation emitted and scattered from Earth's surface and atmosphere at discrete wavelength intervals

Passive Sensors from Weather/Environment Satellites

NCAR UCAR

Electromagnetic Spectrum

What is radiance?

- Radiance (L) is the amount of energy per unit area per unit time per unit solid angle emitted at a wavelength λ (or frequency v)
 - Recall, $c = \lambda v$, where c is the speed of light.
- Physically, can think of radiance as the "brightness" of an object
- Radiance is related to geophysical atmospheric variables by the radiative transfer equation
- Radiances are often converted to brightness temperature (equivalent blackbody temperature, by inverting Plank function)

Figure 1.3 Illustration of a differential solid angle and its representation in polar coordinates. Also shown for demonstrative purposes is a pencil of radiation through an element of area dA in directions confined to an element of solid angle $d\Omega$. Other notations are defined in the text.

Hence, the differential solid angle is

$$d\Omega = d\sigma/r^2 = \sin\theta \, d\theta \, d\phi, \qquad (1.1.5)$$

where θ and ϕ denote the zenith and azimuthal angles, respectively, in polar coordinates.

Atmospheric Transmittance

- Consider radiation at wavelength λ with radiance $L_{\lambda 0}$ incident upon an <u>absorbing medium</u> of thickness *ds*
 - Use an absorption coefficient (β_a ; units m⁻¹) to quantify degree of absorption
- Ignore emission from the medium and scattering
- What is the radiance on the other side of the surface?

Atmospheric Transmittance

• <u>Beer's Law</u> gives the amount of radiation emerging from the material:

$$L_{\lambda f} = L_{\lambda 0} \exp\left[-\int_{s_1}^{s_2} \beta_a(s) ds\right]$$

 The ratio of the amount of radiation that emerges from the cube to the amount that entered is the <u>transmittance</u>:

$$\tau_{\lambda} = \frac{L_{\lambda f}}{L_{\lambda 0}} = \exp\left[-\int_{s_{1}}^{s_{2}} \beta_{a}(s) ds\right]$$

- Transmittance in the real atmosphere varies in space (<u>especially in the</u> <u>vertical</u>) and time
- Letting a_{λ} denote the <u>absorption</u> of the medium at wavelength λ , then in the absence of scattering

$$a_{\lambda} + \tau_{\lambda} = 1$$

Radiative Transfer

Surface emission R_s

- Up-welling atmosphere emission R_A
- Reflected solar radiation R_o

Down-welling & reflected atmos.

Emission (R_D)

Atmospheric gas absorption-transmission

Satellite sensors are designed to make use of the frequencydependent atmospheric absorption

Atmospheric Opacity in the Microwave Spectrum

Weighting functions

Weighting functions indicate the contribution to the outgoing radiance from various layers of the atmosphere

Weighting functions are frequency (channel) dependent

Channel selection for NWP data assimilation

- Atmospheric sounding channels (measured radiance has no contribution from the surface)
- Window channels are sensitive to properties associated with earth and ocean surfaces as well as clouds

yaml setting for radiative transfer model

```
_clear crtm: &clearCRTMObsOperator
name: CRTM
SurfaceWindGeoVars: uv
Absorbers: [H2O, 03]
linear obs operator:
Absorbers: [H2O]
obs options: &CRTMObsOptions
EndianType: little_endian
CoefficientPath: ./crtm_coeffs_v2/
IRVISlandCoeff: USGS
```

```
- obs space:
    <<: *ObsSpace
    name: amsua n18
    obsdatain:
      engine:
        type: H5File
        obsfile: ./amsua_n18_obs_2018041500.h5
    obsdataout:
      engine:
        type: H5File
        obsfile: ./obsout_da_amsua_n18.h5
    simulated variables: [brightnessTemperature]
    channels: &amsua_n18_channels 1-15
  obs error: *ObsErrorDiagonal
  obs operator:
    <<: *clearCRTMObsOperator
    obs options:
      <<: *CRTMObsOptions
      Sensor_ID: amsua_n18
  get values:
```


Settings for channel selection and quality control

Much more you can set for quality control, but not able to cover too much this time

Variational Bias Correction (VarBC)

Bias Correction


```
netcdf satbias_amsua_n18 {
     dimensions:
             nchannels = 15;
             npredictors = 12;
     variables:
             float bias_coeff_errors(npredictors, nchannels);
             float bias_coefficients(npredictors, nchannels);
             int channels(nchannels) ;
             int nchannels(nchannels) ;
                     nchannels:suggested_chunk_dim = 15LL ;
             int npredictors(npredictors) ;
                     npredictors:suggested_chunk_dim = 12LL ;
             float number_obs_assimilated(nchannels) ;
             string predictors(npredictors) ;
     // alobal attributes:
                     string :_ioda_layout = "ObsGroup" ;
                      :_ioda_layout_version = 0 ;
predictors = "constant", "zenith_angle", "cloud_liquid_water",
  "lapse_rate_order_2", "lapse_rate",
   "cosine_of_latitude_times_orbit_node", "sine_of_latitude", "emissivity",
  "scan_angle_order_4", "scan_angle_order_3", "scan_angle_order_2",
  "scan_angle" ;
```

JEDI's bias correction coefficient file

yaml setting for VarBC

```
obs bias:
    input file: {{biasCorrectionDir}}/satbias_amsua_n18.h5
    output file: {{OutDBDir}}{{MemberDir}}/satbias_amsua_n18.h5
    variational bc:
      predictors: &predictors3
      - name: constant
      - name: lapse rate
        order: 2
        tlapse: &amsua18tlap {{fixedTlapmeanCov}}/amsua_n18_tlapmean.txt
      - name: lapse rate
        tlapse: *amsua18tlap
      - name: emissivity
      - name: scan angle
        order: 4
      - name: scan_angle
                                                               J<sub>b</sub>: background term for x
        order: 3
      - name: scan_angle
        order: 2
      - name: scan_angle
                                                               +(\beta_{\rm b}-\beta)^{\rm T}\mathbf{B}_{\beta}^{-1}(\beta_{\rm b}-\beta)
   covariance:
     minimal required obs number: 20
                                                                J<sub>n</sub>: background term for β
     variance range: [1.0e-6, 10.]
     step size: 1.0e-4
     largest analysis variance: 10000.0
     prior:
       input file: {{biasCorrectionDir}}/satbias_cov_amsua_n18.h5
       inflation:
          ratio: 1.1
          ratio for small dataset: 2.0
```

output file: {{OutDBDir}}{{MemberDir}}/satbias_cov_amsua_n18.h5

$$B(\boldsymbol{\beta}) = \sum_{i=1}^{N} \boldsymbol{\beta}_{i} p_{i}$$

Situation-dependent all-sky obs error model

89GHz, $\bar{c}_{clr}=0.03$, $\bar{c}_{cld}=0.24$, $\sigma_{clr}=6.33$, $\sigma_{cld}=19.24$

NCAR | UCAR |

23

Concluding Remarks

- Radiance DA is complex
 - Cloudy radiative transfer, QC, bias correction, all-sky obs error model
 - Different complexity for assimilating different sensors' data
- Much more to explore for satellite DA in general
 - Visible band, near IR, active sensors, small satellites, ...
- JEDI framework allows much greater flexibility to configure/tune without code change, ease science discovery
 - e.g., you can combine the use of CRTM and RTTOV in the same run!

