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The Problem

𝑱 𝑥 = !
" 𝑥 − 𝑥#

$𝑩%𝟏 𝑥 − 𝑥# + !
" ℎ(𝑥) − 𝑦

$𝑹%𝟏 ℎ(𝑥) − 𝑦

We want to find the analysis state 𝒙 	that minimizing a cost 
function with an optimal fit to the background and observations.

Distance to background Distance to observations



Incremental Cost Function in JEDI

The minimization deals with increments to a known reference state
• Cost function minimizes 𝛿𝑥=𝑥− 𝑥! instead of the full state (𝑥)
• Start from 𝑥! = 𝑥" and 𝛿𝑥! = 0
• After minimization-> 𝑥# = 𝑥! + 𝛿𝑥

Liu et al. (2022)
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" 𝑥 − 𝑥#

$𝑩%𝟏 𝑥 − 𝑥# + !
" ℎ(𝑥) − 𝑦

$𝑹%𝟏 ℎ(𝑥) − 𝑦

𝑱 𝛿𝑥 = 𝟏
𝟐 𝛿𝑥 − 𝛿𝑥𝒈

𝑻𝑩(𝟏 𝛿𝑥 − 𝛿𝑥𝒈 + 𝟏
𝟐 𝑯𝛿𝑥 − 𝑑

𝑻𝑹(𝟏 𝑯𝛿𝑥 − 𝑑

𝒅 = 𝒚 − 𝒉(𝒙𝒈)𝜹𝒙 = 𝒙 − 𝒙𝒈 𝛿𝑥! = 𝑥" − 𝑥!

Full-form

Incremental-form



Appropriately assign B and R is critical

The weighting between the two components is determined
by B (background error) and R (observation error).

• A larger B means background is less accurate -> 𝒙 will get closer to observation
• A larger R means observation is less accurate -> 𝒙	will get closer to background

Distance to background Distance to observations

𝑱 𝜹𝒙 = 𝟏
𝟐 𝜹𝒙 − 𝜹𝒙𝒈

𝑻
𝑩-𝟏 𝜹𝒙 − 𝜹𝒙𝒈 + 𝟏

𝟐 𝑯𝜹𝒙 − 𝒅
𝑻𝑹-𝟏 𝑯𝜹𝒙 − 𝒅

We want to find the analysis state 𝑥 	that minimizing a cost function with
an optimal fit to the background and observations.



Two types of background error covariance (B)
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𝑱 𝜹𝒙 = 𝟏
𝟐 𝜹𝒙 − 𝜹𝒙𝒈

𝑻
𝑩-𝟏 𝜹𝒙 − 𝜹𝒙𝒈 + 𝟏

𝟐 𝑯𝜹𝒙 − 𝒅
𝑻𝑹-𝟏 𝑯𝜹𝒙 − 𝒅

1. Static B
-> from statistic, does not vary with time

2. Ensemble B
-> flow-dependent, reflect the background error in different time



Example to show the B effect (Single observation tests)

Ensemble 𝑩:
- Errors of the day are sampled
- flow-dependent update
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Increments of temperature (shaded) 
and horizontal winds (vector)

Ensemble B

-0.5 0.50

Static B
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Derive B matrix from an ensemble of forecasts

𝑩𝒆 =
1

𝑛 − 1
.
012

𝒏

(𝒙𝒊 − 0𝒙)(𝑥0 − �̅�)5
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ensemble size

State variable of each ensemble member

State variable of ensemble mean

• The ensemble mean provides an estimation of the truth
• The perturbations from the mean estimate the uncertainty, which is used to model background-

error covariance matrix.

𝑩𝒆 =
1

𝑛 − 1
>
*+,

𝒏

(𝛿𝑥𝒊)(𝛿𝑥𝒊)/
ensemble perturbation



Localization of the 𝑩 matix

Because we do not have a 
complete estimate of 𝑩 
(e.g., limited ensemble size) 
we need to use localization

Basic idea: observations 
should only influence an 
area nearby the observation

𝑩 = 𝑳 ∘ 𝑩𝒆
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Small localization



Localization of the 𝑩 matix

Because we do not have a 
complete estimate of 𝑩 
(e.g., limited ensemble size) 
we need to use localization

Basic idea: observations 
should only influence an 
area nearby the observation

𝑩 = 𝑳 ∘ 𝑩𝒆
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large localization



Benefits of using an ensemble to estimate 𝑩

• Simple to implement

• Provides a flow-dependent estimate of the errors and uncertainties
ØDepends on the quality of the ensemble

• Incorporates ensemble estimate of background errors within the 
variational update
ØStill updates a deterministic forecast
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EnVar uses a pure ensemble B to updates a deterministic forecast 

In hybrid methods, B can be a weighting sum between static B (𝑩𝒔) and
ensemble B (𝑩𝒆).
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𝑩 = 𝛽'𝑩𝒔 + 𝛽)𝑩𝒆
𝛽' + 𝛽) = 1

=1
pure ensemble B 
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3DEnVar

𝑱 𝑥 = 2
7 𝑥 − 𝑥8

5𝑩-𝟏 𝑥 − 𝑥8 + 2
7 ℎ(𝑥) − 𝑦

5𝑹-𝟏 ℎ(𝑥) − 𝑦

• We assume that all observations 𝒚𝒐 are valid at the same time.
• Usually valid at the center of the window (i.e. at the same time as 𝒙 and 𝒙𝒃)
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3DEnVar using a 6h assimilation window
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Background
and analysis

0ℎ +3ℎ– 3ℎ

observations

• All observations in 3DEnVar are assumed to be valid at the same time as the background
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Configure the analysis time for 3DEnvar
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\

\

\

analysis time (center of window)

Start of assimilation window
length of assimilation window

First guess (should be at analysis time)
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\

Specifying members used  to compute ensemble B

Configure the ensemble B

set ensemble 𝑩 for 3DEnVar



Overview

1. Variational Cost Function
2. Ensemble Error Covariance Matrix
3. Overview of 3DEnVar
4. Setting up a .yaml file for 3DEnVar
5. Overview of 4DEnVar
6. Setting up a .yaml file for 4DEnVar

10/20/23 20



4DEnVar

𝑱 𝒙 = 𝟏
𝟐 𝒙 − 𝒙𝒃

𝑻𝑩%𝟏 𝒙 − 𝒙𝒃 + 𝟏
𝟐-
𝒌'𝟏

𝑲

𝑯𝒙𝒌 − 𝒚𝒌 𝑻𝑹𝒌%𝟏 𝑯𝒙𝒌 − 𝒚𝒌
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Background

0ℎ +3ℎ– 3ℎ

observations
Background Background

– 1.5ℎ +1.5ℎ

• All observations in 4DEnVar are binned within a smaller subwindow and innovations 
(𝑯𝒙 − 𝒚𝒐) are calculated relative to background valid at that time.

• Ensemble needed at the center of each subwindow (𝑲 ensemble required). 



The 4D ensemble 𝑩 is used to propagate the innovation

10/20/23 22

Start of window

end of window

Lorenc et al. (2015)

Static B Ensemble B



4DEnVar vs 3DEnVar Performance
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• Assimilating observations at their appropriate time improves the analyses
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Configure the analysis times for 4DEnvar
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subwindow1

subwindow2

subwindow3
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Background needed for each subwindow

bg (subwindow 1)

bg (subwindow 2)

bg (subwindow 3)
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Configure the ensemble B

set ensemble 𝑩 for 4DEnVar
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Member file needed 
for each subwindow



Further reading: an alternative way to specify the 𝑩 ensemble 
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You can find it at 
./mpas_bundle_v2/build/mpas-jedi/test/testinput /eda_3dhybrid_1.yaml
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