Basics of Data Assimilation

Zhiquan (Jake) Liu

Prediction, Assimilation, and Risk Communication Section
Mesoscale \& Microscale Meteorology Laboratory National Center for Atmospheric Research

MPAS-JEDI Tutorial at NCU, 25-26 October, 2023

Outline

- Scalar case
- Case with two state variables
- General n-dimensional case

What is data assimilation?

- A probabilistic method to obtain the best estimate of state variables
- In the atmospheric sciences, DA typically involves combining model forecast (Prior) and observations, along with their respective errors characterization, to produce an analysis (Posterior) that can initialize a numerical weather prediction model (e.g., WRF)

Scalar Case

- State variable to estimate "x", e.g., consider today's temperature in Taoyuan at 06 UTC.
- Now we have a "background" (or "prior") information x_{b} of x, which is from a 6-h GFS or MPAS forecast initiated from 00 UTC analysis.
- We also have an observation y of x at a surface station in Taoyuan
- What is the best estimate (analysis) x_{a} of x ?

Scalar Case

- We can simply average them: $x_{a}=\frac{1}{2}\left(x_{b}+y\right)$
- This actually means we trust equally the background and observation, giving them equal weight
- But if their accuracy is different and we have some estimation of their errors
- e.g., for background, we have statistics (e.g., mean and variance) of $x_{b}-y$ from the past
- For observation, we have instrument error information from manufacturer

Scalar Case

- Then we can do a weighted mean: $x_{a}=a x_{b}+b y$ in a least square sense, i.e.,

Minimize

$$
J(x)=\frac{1}{2} \frac{\left(x-x_{b}\right)^{2}}{\sigma_{b}^{2}}+\frac{1}{2} \frac{(x-y)^{2}}{\sigma_{o}^{2}}
$$

Requires

$$
\frac{d J(x)}{d x}=\frac{\left(x-x_{b}\right)}{\sigma_{b}^{2}}+\frac{(x-y)}{\sigma_{o}^{2}}=0
$$

Then we can easily get $\quad x_{a}=\frac{\sigma_{o}^{2}}{\sigma_{b}^{2}+\sigma_{o}^{2}} x_{b}+\frac{\sigma_{b}^{2}}{\sigma_{b}^{2}+\sigma_{o}^{2}} y=\frac{1}{1+\sigma_{b}^{2} / \sigma_{o}^{2}} x_{b}+\frac{1}{1+\sigma_{o}^{2} / \sigma_{b}^{2}} y$

Or we can write in the form of analysis increment

$$
x_{a}-x_{b}=\frac{\sigma_{b}^{2}}{\sigma_{b}^{2}+\sigma_{o}^{2}}\left(y-x_{b}\right)=\frac{1}{1+\sigma_{o}^{2} / \sigma_{b}^{2}}\left(y-x_{b}\right)
$$

Scalar Case

Minimize

$$
J(x)=\frac{1}{2} \frac{\left(x-x_{b}\right)^{2}}{\sigma_{b}^{2}}+\frac{1}{2} \frac{(x-y)^{2}}{\sigma_{o}^{2}}
$$

is actually equivalent to maximize a Gaussian Probability Distribution Function (PDF)

$$
c e^{-J(x)}
$$

Assume errors of X_{b} and y are unbiased

Two state variables case

- Consider two state variables to estimate: Taoyuan and Taipei’s temperatures x_{1} and x_{2} at 06 UTC today.
- Background from 6-h forecast: $x_{1}{ }^{b}$ and $x_{2}{ }^{b}$ and their error covariance with correlation c

$$
\mathbf{B}=\left[\begin{array}{cc}
\sigma_{1}^{2} & c \sigma_{1} \sigma_{2} \\
c \sigma_{1} \sigma_{2} & \sigma_{2}^{2}
\end{array}\right]=\left[\begin{array}{cc}
\sigma_{1} & 0 \\
0 & \sigma_{2}
\end{array}\right]\left[\begin{array}{ll}
1 & c \\
c & 1
\end{array}\right]\left[\begin{array}{cc}
\sigma_{1} & 0 \\
0 & \sigma_{2}
\end{array}\right]
$$

- We only have an observation y_{1} at a Taoyuan station and its error variance $\sigma_{0}{ }^{2}$

Analysis increment for two variables

$$
\begin{aligned}
& x_{1}^{a}-x_{1}^{b}=\frac{\sigma_{1}^{2}}{\sigma_{1}^{2}+\sigma_{o}^{2}}\left(y_{1}-x_{1}^{b}\right) \longleftarrow \text { Taoyuan } \\
& x_{2}^{a}-x_{2}^{b}=\frac{c \sigma_{1} \sigma_{2}}{\sigma_{1}^{2}+\sigma_{o}^{2}}\left(y_{1}-x_{1}^{b}\right) \longleftarrow \text { Taipei }
\end{aligned}
$$

Unobserved variable x_{2} gets updated through the error correlation c in the background error covariance.

In general, this correlation can be correlation between two locations (spatial), two variables (multivariate), or two times (temporal).

Observations
$\mathrm{y}^{\mathrm{o}}, \sim 10^{5}-10^{6}$

Model state
$\mathrm{x}, \sim 10^{7}$

General Case

General Case: vector and matrix notation

state vector

$$
x=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{m}
\end{array}\right]
$$

background error covariance

$$
\mathbf{B}=\left[\begin{array}{cccc}
\sigma_{1}^{2} & c_{12} \sigma_{1} \sigma_{2} & \ldots & \ldots \\
c_{12} \sigma_{1} \sigma_{2} & \sigma_{2}^{2} & \ldots & \ldots \\
\ldots & \ldots & \ddots & \ldots \\
\ldots & \ldots & \ldots & \sigma_{m}^{2}
\end{array}\right]=\sigma \underset{\uparrow}{\underset{\text { Correlation matrix }}{\mathrm{C}} \sigma}
$$

observation vector

$$
y=\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right]
$$

Observation error covariance

$$
\mathbf{R}=\left[\begin{array}{cccc}
\sigma_{o 1}^{2} & 0 & \ldots & 0 \\
0 & \sigma_{o 2}^{2} & \ldots & 0 \\
\vdots & \ldots & \ddots & \vdots \\
0 & \ldots & \ldots & \sigma_{o n}^{2}
\end{array}\right]
$$

n×n

General Case: cost function

$$
\begin{array}{lcc}
1 \times 1 & 1 \times \mathrm{m} \quad \mathrm{mxmmx} & 1 \times \mathrm{n} \quad \mathrm{nxn} \quad \mathrm{nx} 1
\end{array}
$$

H maps x to y space, e. g., interpolation. Terminology in DA: observation operator

Minimize $\mathrm{J}(\mathrm{x})$ is equivalent to maximize a multi-dimensional Gaussian PDF Constant * $e^{-J(x)}$

General Case: analytical solution

Again, minimize J requires its gradient (a vector) with respect to x equal to zero:

$$
\begin{aligned}
& \nabla J_{\mathbf{x}}(\mathbf{x})=\mathbf{B}^{-1}\left(\mathbf{x}-\mathbf{x}_{\mathbf{b}}\right)-\mathbf{H}^{\mathrm{T}} \mathbf{R}^{-1}[\mathbf{y}-\mathbf{H} \mathbf{x}]=0 \\
& \mathrm{~m} \times 1
\end{aligned}
$$

This leads to analytical solution for the analysis increment:
HBH^{\top} : background error covariance projected into observation space
BH^{\top} : background error covariance projected into cross background-observation space

Iterative algorithm to find minimum of cost function

- Descending algorithms
- Descending direction: $\mathrm{Y}_{\mathrm{n}}(\mathrm{N}$ dimensional vector)
- Descending step: μ_{n}

$$
x_{n+1}=x_{n}+\mu_{n} \gamma_{n}
$$

from Bouttier and Courtier 1999

Precision of Analysis with optimal B and R

$$
\begin{aligned}
& \quad \mathbf{A}^{-1}=\mathbf{B}^{-1}+\mathbf{H}^{\mathrm{T}} \mathbf{R}^{-1} \mathbf{H} \\
& \text { Generalization of scalar case } \frac{1}{\sigma_{a}^{2}}=\frac{1}{\sigma_{b}^{2}}+\frac{1}{\sigma_{o}^{2}}
\end{aligned}
$$

Or in another form: $\quad \mathbf{A}=(\mathbf{I}-\mathbf{K H}) \mathbf{B}$
With

$$
\mathbf{K}=\mathbf{B} \mathbf{H}^{\mathrm{T}}\left(\mathbf{H B} \mathbf{H}^{\mathrm{T}}+\mathbf{R}\right)^{-1}
$$

called Kalman gain matrix

Precision of analysis: more general formulation

$$
\mathbf{A}=(\mathbf{I}-\mathbf{K H}) \mathbf{B}_{t}(\mathbf{I}-\mathbf{K H})^{\mathrm{T}}+\mathbf{K R}_{t} \mathbf{K}^{\mathrm{T}}
$$

where B_{t} and R_{t} are "true" background and observation error covariances.
This formulation is valid for any given gain matrix K, which could be suboptimal (e.g., due to incorrect estimation/specification of B and R).

Analysis increment with a single humidity observation

$$
\begin{aligned}
& x^{a}-x^{b}=\mathbf{B H}^{\mathrm{T}}\left(\mathbf{H B} \mathbf{H}^{\mathrm{T}}+\mathbf{R}\right)^{-1}\left[y-\mathbf{H} x^{b}\right] \\
& x_{l}^{a}-x_{l}^{b}=\frac{c_{l k} \sigma_{l} \sigma_{k}}{\sigma_{k}^{2}+\sigma_{o k}^{2}}\left(y_{k}-x_{k}^{b}\right)
\end{aligned}
$$

It is generalization of previous two variables case:

$$
\begin{aligned}
& x_{1}^{a}-x_{1}^{b}=\frac{\sigma_{1}^{2}}{\sigma_{1}^{2}+\sigma_{o}^{2}}\left(y_{1}-x_{1}^{b}\right) \\
& x_{2}^{a}-x_{2}^{b}=\frac{c \sigma_{1} \sigma_{2}}{\sigma_{1}^{2}+\sigma_{o}^{2}}\left(y_{1}-x_{1}^{b}\right)
\end{aligned}
$$

Other Remarks

- Observation operator can be non-linear and thus analysis error PDF is not necessarily Gaussian
- $J(x)$ can have multiple local minima. Final solution of least square depends on starting point of iteration, e.g., choose the background x_{b} as the first guess.

Other Remarks

- B matrix is of very large dimension, explicit inverse of \mathbf{B} is impossible, substantial efforts in data assimilation were given to the estimation and modeling of \mathbf{B}.
- B shall be spatially-varied and time-evolving according to weather regime.
- Analysis can be sub-optimal if using inaccurate estimate of \mathbf{B} and \mathbf{R}.
- Could use non-Gaussian PDF
- Thus not a least square cost function
- Difficult (usually slow) to solve; could transform into Gaussian problem via variable transform

Further reading

