

Dynamical Core

- Spatial discretization
 - Transport
 - Filters
 - Namelist parameters
 - References

MPAS Horizontal Mesh

Unstructured spherical centroidal Voronoi meshes

- Mostly *hexagons*, some pentagons (5-sided cells) and heptagons (7-sided cells).
- Cell centers are at cell center-of-mass (centroidal).
- Cell edges bisect lines connecting cell centers; perpendicular.
- C-grid staggering of velocities (velocities are perpendicular to cell faces).
- Uniform resolution traditional icosahedral mesh.

Equations

- Prognostic equations for coupled variables.
- Generalized height coordinate.
- Horizontally vectorinvariant equation set.
- Continuity equation for dry air mass.
- Thermodynamic equation for coupled potential temperature.

MPAS Nonhydrostatic Atmospheric Solver

Variables: $(U, V, \Omega, \Theta, Q_j) = \tilde{\rho}_d (u, v, \omega, \theta, q_j)$ $\tilde{\rho}_d = \rho_d / \zeta_z$ Vertical coordinate: $z = \zeta + A(\zeta)h_s(x, y, \zeta)$

Prognostic equations:

Diagnostics and definitions:

$$\begin{aligned} \frac{\partial \mathbf{V}_{H}}{\partial t} &= -\frac{\rho_{d}}{\rho_{m}} \left[\nabla_{\zeta} \left(\frac{p}{\zeta_{z}} \right) - \frac{\partial \mathbf{z}_{H} p}{\partial \zeta} \right] - \eta \, \mathbf{k} \times \mathbf{V}_{H} \\ &- \mathbf{v}_{H} \left(\nabla_{\zeta} \cdot \mathbf{V} \right) \cdot \frac{\partial \Omega \mathbf{v}_{H}}{\partial \zeta} - \rho_{d} \nabla_{\zeta} K + \mathbf{F}_{V_{H}} \\ \frac{\partial W}{\partial t} &= -\frac{\rho_{d}}{\rho_{m}} \left[\frac{\partial p}{\partial \zeta} + g \tilde{\rho}_{m} \right] \left(- \left(\nabla \cdot \mathbf{v} W \right)_{\zeta} \right) + F_{W} \\ \frac{\partial \Theta_{m}}{\partial t} &= -\left(\nabla \cdot \mathbf{V} \theta_{m} \right)_{\zeta} + F_{\Theta_{m}} \\ \frac{\partial \tilde{\rho}_{d}}{\partial t} &= -\left(\nabla \cdot \mathbf{V} \theta_{j} \right)_{\zeta} + F_{Q_{j}} \end{aligned}$$
Dry-air flux divergence
Flux divergence

$$\frac{\rho_m}{\rho_d} = 1 + q_v + q_c + q_r + \dots$$

$$p = p_0 \left(\frac{R_d \zeta_z \Theta_m}{p_0}\right)^{\gamma} \qquad \qquad \theta_m = \theta \left[1 + (R_v/R_d)q_v\right]$$

Transport equation, conservative form:

Finite-Volume formulation, Integrate over cell:

Apply divergence theorem:

$$\frac{\partial t}{\partial t} = -\nabla \cdot \mathbf{V}(\rho \psi)$$

 $\partial(\rho\psi)$

 $\int_{D} \left[\frac{\partial}{\partial t} (\rho \psi) = -\nabla \cdot \mathbf{V}(\rho \psi) \right] dV$

 $\frac{\partial(\rho\psi)}{\partial t} = -\frac{1}{V} \int_{\Sigma} (\rho\psi) \, \mathbf{V} \cdot \mathbf{n} \, d\sigma$

Velocity divergence operator is 2nd-order accurate for edge-centered velocities.

Discretize in time and space:

$$(\overline{\rho\psi})_i^{t+\Delta t} = (\overline{\rho\psi})_i^t - \Delta t \, \frac{1}{A_i} \sum_{n_{e_i}} d_{e_i} \overline{(\rho \mathbf{V} \cdot \mathbf{n}_{e_i})\psi}$$

Transport equation, conservative form:

Apply divergence theorem:

 $\frac{\partial(\overline{\rho\psi})}{\partial t} = -\frac{1}{V} \int_{\Sigma} (\rho\psi) \, \mathbf{V} \cdot \mathbf{n} \, d\sigma$

 $\frac{\partial(\rho\psi)}{\partial t} = -\nabla \cdot \mathbf{V}(\rho\psi)$

 $\int\limits_{D} \left[\frac{\partial}{\partial t} (\rho \psi) = -\nabla \cdot \mathbf{V}(\rho \psi) \right] dV$

Discretize in time and space:

$$(\overline{\rho\psi})_i^{t+\Delta t} = (\overline{\rho\psi})_i^t - \Delta t \frac{1}{A_i} \sum_{n_{e_i}} d_{e_i} \underbrace{\rho \mathbf{V} \cdot \mathbf{n}_e}_{t} \psi$$

In MPAS, the mass flux is a prognostic variables at the cell edge.

Scalar mixing ratios are defined at cell centers. Their definition at the cell edges defines the *transport scheme.*

More generally, a transport scheme defines the temporally and spatially integrated scalar mass flux through the edge over timestep Δt .

$$\phi^t \to \phi^{t+\Delta t}$$

Runge-Kutta time integration

$$\phi^* = \phi^t + \frac{\Delta t}{3} RHS(\phi^t)$$

$$\phi^{**} = \phi^t + \frac{\Delta t}{2} RHS(\phi^*)$$

$$\phi^{t+\Delta t} = \phi^t + \Delta t RHS(\phi^{**})$$

$$(\overline{\rho\psi})_i^{t+\Delta t} = (\overline{\rho\psi})_i^t - \Delta t \frac{1}{A_i} \sum_{n_{e_i}} d_{e_i} (\overline{\rho \mathbf{V} \cdot \mathbf{n}_{e_i}}) \psi$$

Transport – Unstructured MPAS Mesh

$$\begin{split} \frac{\partial \mathbf{V}_{H}}{\partial t} &= -\frac{\rho_{d}}{\rho_{m}} \left[\nabla_{\zeta} \left(\frac{p}{\zeta_{z}} \right) - \frac{\partial \mathbf{z}_{H} p}{\partial \zeta} \right] - \eta \, \mathbf{k} \times \mathbf{V}_{H} \\ &- \mathbf{v}_{H} \nabla_{\zeta} \cdot \mathbf{V} + \frac{\partial \Omega \mathbf{v}_{H}}{\partial \zeta} - \rho_{d} \nabla_{\zeta} K + \mathbf{F}_{V_{H}} \\ \frac{\partial W}{\partial t} &= -\frac{\rho_{d}}{\rho_{m}} \left[\frac{\partial p}{\partial \zeta} + g \tilde{\rho}_{m} \right] - \left(\nabla \cdot \mathbf{v} \, W \right)_{\zeta} + F_{W} \\ \frac{\partial \Theta_{m}}{\partial t} &= -\left(\nabla \cdot \mathbf{V} \, \theta_{m} \right)_{\zeta} + F_{\Theta_{m}} \\ \frac{\partial \tilde{\rho}_{d}}{\partial t} &= -\left(\nabla \cdot \mathbf{V} \, \theta_{j} \right)_{\zeta} + F_{\Theta_{j}} \\ \frac{\partial Q_{j}}{\partial t} &= -\left(\nabla \cdot \mathbf{V} \, q_{j} \right)_{\zeta} + F_{Q_{j}} \\ \mathbf{V} &= \rho \mathbf{v}; \quad \mathbf{v} = (u, w) \end{split}$$

For the horizontal dry-air mass flux, the value of the density ρ_d at a cell face is set equal to the average of the densities from the two cells sharing the face:

$$\rho_{\text{edge}} = (\rho_0 + \rho_1)/2, \ V_{\text{edge}} = u_e (\rho_0 + \rho_1)/2$$

Equations

- Prognostic equations for coupled variables.
- Generalized height coordinate.
- Horizontally vectorinvariant equation set.
- Continuity equation for dry air mass.
- Thermodynamic equation for coupled potential temperature.

MPAS Nonhydrostatic Atmospheric Solver

Variables: $(U, V, \Omega, \Theta, Q_j) = \tilde{\rho}_d (u, v, \omega, \theta, q_j)$ $\tilde{\rho}_d = \rho_d / \zeta_z$ Vertical coordinate: $z = \zeta + A(\zeta)h_s(x, y, \zeta)$

Prognostic equations:

Diagnostics and definitions:

$$\begin{aligned} \frac{\partial \mathbf{V}_{H}}{\partial t} &= -\frac{\rho_{d}}{\rho_{m}} \left[\nabla_{\zeta} \left(\frac{p}{\zeta_{z}} \right) - \frac{\partial \mathbf{z}_{H} p}{\partial \zeta} \right] - \eta \, \mathbf{k} \times \mathbf{V}_{H} \\ &- \mathbf{v}_{H} \nabla_{\zeta} \cdot \mathbf{V} - \frac{\partial \Omega \mathbf{v}_{H}}{\partial \zeta} - \rho_{d} \nabla_{\zeta} K + \mathbf{F}_{V_{H}} \\ \frac{\partial W}{\partial t} &= -\frac{\rho_{d}}{\rho_{m}} \left[\frac{\partial p}{\partial \zeta} + g \tilde{\rho}_{m} \right] - \left(\nabla \cdot \mathbf{v} W \right)_{\zeta} + F_{W} \\ \frac{\partial \Theta_{m}}{\partial t} &= -\left(\nabla \cdot \mathbf{V} \theta_{m} \right)_{\zeta} + F_{\Theta_{m}} \\ \frac{\partial \tilde{\rho}_{d}}{\partial t} &= -\left(\nabla \cdot \mathbf{V} \right)_{\zeta} \end{aligned}$$
Flux divergence
$$\frac{\partial Q_{j}}{\partial t} = -\left(\nabla \cdot \mathbf{V} q_{j} \right)_{\zeta} + F_{Q_{j}} \end{aligned}$$

$$\frac{\rho_m}{\rho_d} = 1 + q_v + q_c + q_r + \dots$$

$$p = p_0 \left(\frac{R_d \zeta_z \Theta_m}{p_0}\right)^{\gamma} \qquad \qquad \theta_m = \theta \left[1 + (R_v/R_d)q_v\right]$$

How do we define the edge mixing ratio on the MPAS unstructured mesh? First consider a structured mesh - WRF 3rd and 4th-order fluxes

(Hundsdorfer et al, 1995; Van Leer, 1985)

 β = 0, fourth-order; β = 1 third order

3rd and 4th-order WRF fluxes:

$$F(u,\psi)_{i+1/2} = u_{i+1/2} \left[\frac{1}{2} \left(\psi_{i+1} + \psi_i \right) - \frac{1}{12} \left(\delta_x^2 \psi_{i+1} + \delta_x^2 \psi_i \right) + sign(u) \frac{\beta}{12} \left(\delta_x^2 \psi_{i+1} - \delta_x^2 \psi_i \right) \right] du_{i+1/2} = u_{i+1/2} \left[\frac{1}{2} \left(\psi_{i+1} + \psi_i \right) - \frac{1}{12} \left(\delta_x^2 \psi_{i+1} + \delta_x^2 \psi_i \right) + sign(u) \frac{\beta}{12} \left(\delta_x^2 \psi_{i+1} - \delta_x^2 \psi_i \right) \right] du_{i+1/2} = u_{i+1/2} \left[\frac{1}{2} \left(\psi_{i+1} + \psi_i \right) - \frac{1}{12} \left(\delta_x^2 \psi_{i+1} + \delta_x^2 \psi_i \right) + sign(u) \frac{\beta}{12} \left(\delta_x^2 \psi_{i+1} - \delta_x^2 \psi_i \right) \right] du_{i+1/2} = u_{i+1/2} \left[\frac{1}{2} \left(\psi_{i+1} + \psi_i \right) - \frac{1}{12} \left(\delta_x^2 \psi_{i+1} - \delta_x^2 \psi_i \right) + sign(u) \frac{\beta}{12} \left(\delta_x^2 \psi_{i+1} - \delta_x^2 \psi_i \right) \right] du_{i+1/2} = u_{i+1/2} \left[\frac{1}{2} \left(\psi_{i+1} + \psi_i \right) - \frac{1}{12} \left(\delta_x^2 \psi_{i+1} - \delta_x^2 \psi_i \right) + sign(u) \frac{\beta}{12} \left(\delta_x^2 \psi_{i+1} - \delta_x^2 \psi_i \right) \right] du_{i+1/2} = u_{i+1/2} \left[\frac{1}{2} \left(\psi_{i+1} + \psi_i \right) - \frac{1}{12} \left(\delta_x^2 \psi_{i+1} - \delta_x^2 \psi_i \right) + sign(u) \frac{\beta}{12} \left(\delta_x^2 \psi_{i+1} - \delta_x^2 \psi_i \right) \right] du_{i+1/2} = u_{i+1/2} \left[\frac{1}{2} \left(\psi_{i+1} + \psi_i \right) + \frac{1}{12} \left(\delta_x^2 \psi_{i+1} - \delta_x^2 \psi_i \right) + sign(u) \frac{\beta}{12} \left(\delta_x^2 \psi_{i+1} - \delta_x^2 \psi_i \right) \right] du_{i+1/2} \left[\frac{1}{2} \left(\psi_{i+1} + \psi_i \right) + \frac{1}{12} \left(\delta_x^2 \psi_{i+1} - \delta_x^2 \psi_i \right) + sign(u) \frac{\beta}{12} \left(\delta_x^2 \psi_{i+1} - \delta_x^2 \psi_i \right) \right] du_{i+1/2} \left[\frac{1}{2} \left(\psi_{i+1} - \psi_i \right) + \frac{1}{12} \left(\delta_x^2 \psi_{i+1} - \delta_x^2 \psi_i \right) \right] du_{i+1/2} \left[\frac{1}{2} \left(\psi_{i+1} - \psi_i \right) + \frac{1}{12} \left(\delta_x^2 \psi_{i+1} - \delta_x^2 \psi_i \right) \right] du_{i+1/2} \left[\frac{1}{2} \left(\psi_{i+1} - \psi_i \right) + \frac{1}{12} \left(\psi_{i+1} - \psi_i \right) \right] du_{i+1/2} \left[\frac{1}{2} \left(\psi_{i+1} - \psi_i \right) + \frac{1}{12} \left(\psi_{i+1} - \psi_i \right) \right] du_{i+1/2} \left[\psi_{i+1} - \psi_i \right] du_{i+1/2} \left[\psi_{i+1/2} - \psi_i \right] du_{i+1/2} \left[\psi_{i+1} - \psi_i \right] du_{i+1/2} \left[\psi_{i+1/2} - \psi_i \right] du_{i+1/2} \left[\psi_{i+1/2} - \psi_i \right] du_{i+1/2} \left[\psi_{i+1} - \psi_i \right] du_{i+1/2} du_{i+1/2} \left[\psi_{i+1/2} - \psi_i \right] du_{i+1/2} du$$

Transport – Unstructured MPAS Mesh

3rd and 4th-order fluxes (e.g. WRF):

$$F(u,\psi)_{i+1/2} = u_{i+1/2} \left[\frac{1}{2} \left(\psi_{i+1} + \psi_i \right) - \frac{1}{12} \left(\delta_x^2 \psi_{i+1} + \delta_x^2 \psi_i \right) + sign(u) \frac{\beta}{12} \left(\delta_x^2 \psi_{i+1} - \delta_x^2 \psi_i \right) \right]$$

where $\delta_x^2 \psi_i = \psi_{i-1} - 2\psi_i + \psi_{i+1}$ (Hundsdorfer et al, 1995; Van Leer, 1985)

Recognizing $\delta_x^2 \psi = \Delta x^2 \frac{\partial^2 \psi}{\partial x^2} + O(\Delta x^4)$ we recast the 3rd and 4th order flux as $F(u, \psi)_{i+1/2} = u_{i+1/2} \left[\frac{1}{2} \left(\psi_{i+1} + \psi_i \right) - \Delta x_e^2 \frac{1}{12} \left\{ \left(\frac{\partial^2 \psi}{\partial x^2} \right)_{i+1} + \left(\frac{\partial^2 \psi}{\partial x^2} \right)_i \right\} + sign(u) \Delta x_e^2 \frac{\beta}{12} \left\{ \left(\frac{\partial^2 \psi}{\partial x^2} \right)_{i+1} - \left(\frac{\partial^2 \psi}{\partial x^2} \right)_i \right\} \right]$

where x is the direction normal to the cell edge and i and i+1 are cell centers. We use the least-squares-fit polynomial to compute the second derivatives.

NCAR | MPAS-A and

Transport – Unstructured MPAS Mesh

3rd and 4th-order fluxes (e.g. WRF):

$$F(u,\psi)_{i+1/2} = u_{i+1/2} \left[\frac{1}{2} \left(\psi_{i+1} + \psi_i \right) - \frac{1}{12} \left(\delta_x^2 \psi_{i+1} + \delta_x^2 \psi_i \right) + sign(u) \frac{\beta}{12} \left(\delta_x^2 \psi_{i+1} - \delta_x^2 \psi_i \right) \right]$$

where $\delta_x^2 \psi_i = \psi_{i-1} - 2\psi_i + \psi_{i+1}$ (Hundsdorfer et al, 1995; Van Leer, 1985)

Recognizing $\delta_x^2 \psi = \Delta x^2 \frac{\partial^2 \psi}{\partial x^2} + O(\Delta x^4)$ we recast the 3rd and 4th order flux as $F(u, \psi)_{i+1/2} = u_{i+1/2} \left[\frac{1}{2} \left(\psi_{i+1} + \psi_i \right) - \Delta x_e^2 \frac{1}{12} \left\{ \left(\frac{\partial^2 \psi}{\partial x^2} \right)_{i+1} + \left(\frac{\partial^2 \psi}{\partial x^2} \right)_i \right\} + sign(u) \Delta x_e^2 \frac{\beta}{12} \left\{ \left(\frac{\partial^2 \psi}{\partial x^2} \right)_{i+1} - \left(\frac{\partial^2 \psi}{\partial x^2} \right)_i \right\} \right]$

where x is the direction normal to the cell edge and i and i+1 are cell centers. We use the least-squares-fit polynomial to compute the second derivatives.

п. Scalar transport equation for o

1. Scalar edge-flux value ψ i values from cells that sha Flux divergence, transport, and Runge-Kutta time integration

cell *i*:
$$\frac{\partial(\rho\psi)_i}{\partial t} = L(V,\rho,\psi) = -\frac{1}{A_i}\sum_{n_{e_i}} d_{e_i}(\rho V \cdot \bar{n}_{e_i})\overline{\psi}$$

s the weighted sum of cell
re edge and all their neighbors.
update the two cells that share

2. Each edge-flux is used to

the edge.

- 3. Three edge-flux evaluations and cell updates are needed to complete the Runge-Kutta timestep.
- 4. Weights are pre-computed and stored for use during the integration.

 $(\rho\psi)^* = (\rho\psi)^t + \frac{\Delta t}{3}L(\mathbf{V},\rho,\psi^t)$ $(\rho\psi)^{**} = (\rho\psi)^t + \frac{\Delta t}{2}L(\mathbf{V}, \rho, \psi^*)$ $(\rho\psi)^{t+\Delta t} = (\rho\psi)^t + \Delta t L(\mathbf{V}, \rho, \psi^{**})$

NCAR **ICAR**

MPAS-A and MPAS-JEDI Tutorials, 23-26 October 2023, Taiwan

 $\partial(\rho\psi)_i$

Flux divergence and transport. Conservation

Horizontal (scalar) mass fluxes

Vertical (scalar) mass fluxes

The mass (or scalar mass) flux on a cell edge (face) is used to update both cells sharing that edge (face), thus mass (and scalar mass) is conserved exactly.

Scalar transport: Positive-definite and monotonic renormalization

Scalar update, last RK3 step:
$$(\rho\phi)_{i}^{t+\Delta t} = (\rho\phi)_{i}^{t} - \frac{1}{V_{i}} \sum_{\substack{n_{e_{i}} \\ n_{e_{i}}}} A_{e_{i}} \overline{(\rho \mathbf{V} \cdot \mathbf{n_{e_{i}}})\phi}$$
 (1)
Renormalization

(1) Decompose flux:
$$f_i = f_i^{upwind} + f_i^c$$

(2) Renormalize high-order correction fluxes f_i^c such that solution is positive definite or monotonic: $f^c = R(f^c)$

uation (1) using $f_i = f_i^{upwind} + R(f_i^c)$

 ψ_9

 ψ_1

 ψ_6

 ψ_8

 ψ_7

Conservative Transport with RK3 Time Integration: *Examples*

Conservative Transport with RK3 Time Integration: *Examples*

$$\begin{split} F(u,\psi)_{i+1/2} &= u_{i+1/2} \bigg[\frac{1}{2} \left(\psi_{i+1} + \psi_i \right) - \Delta x_e^2 \frac{1}{12} \left\{ \left(\frac{\partial^2 \psi}{\partial x^2} \right)_{i+1} + \left(\frac{\partial^2 \psi}{\partial x^2} \right)_i \right\} \\ &+ sign(u) \, \Delta x_e^2 \frac{\beta}{12} \left\{ \left(\frac{\partial^2 \psi}{\partial x^2} \right)_{i+1} - \left(\frac{\partial^2 \psi}{\partial x^2} \right)_i \right\} \bigg] \end{split}$$

FIG. 7. Deformational flow test case results at time T using (11) with different values of the filter parameter β . The simulations were performed on the 40962-cell grid.

0.1

0.2 0.3 0.4 0.5 0.6 0.7

0.8 0.9

1 1.1

Configuring the dynamics

<u>Transport</u>

namelist.atmosphere

&nhyd model config time integration order = 2 $config_dt = 720.0$ config_start_time = '2010-10-23_00:00:00' config_run_duration = '5_00:00:00' config split dynamics transport = true Upwind coefficient (0 < -> 1), config number of sub steps = 2> 0 increases damping. config dynamics split steps = 3 = 0, 4th order scheme, config_horiz_mixing = '2d_smagorinsky' > 0, 3rd order scheme. config visc4 2dsmag = 0.05config scalar advection = true config monotonic = true config coef 3rd order = 0.25config epssm = 0.1config smdiv = 0.1

/

Operators on the Voronoi Mesh Resolved and turbulent transport

$$\frac{\partial(\rho\phi)}{\partial t} = \underline{-\nabla\cdot\mathbf{V}\phi}$$

Transport by the resolved flow

 $= \nabla \cdot (\rho K \nabla \phi)$

Turbulent transport, e.g. Smagorinsky K is an eddy viscosity (m²/s)

$$= -\nabla \cdot (\rho \, \nu_4 \nabla (\nabla \cdot \nabla \phi))$$

4th-order filter cast as a turbulent transport \mathcal{V}_4 is a hyperviscosity (m⁴/s)

Operators on the Voronoi Mesh Resolved and turbulent transport

Operators on the Voronoi Mesh Filters for horizontal momentum 2nd order filter

$$\frac{\partial u_i}{\partial t} = \dots + K_u \nabla^2 u_i$$

Operators on the Voronoi Mesh Filters for horizontal momentum

4th order filter

NCAR

Configuring the dynamics

Dissipation

namelist.atmosphere

&nhyd_model

config_time_integration_order = 2 config_dt = 720.0 config_start_time = '2010-10-23_00:00'0' config_run_duration = '5_00:00:00' config_split_dynamics_transport = true config_number_of_sub_steps = 2 config_dynamics_split_steps = 3 config_horiz_mixing = '2d_smagorinsky' config_visc4_2dsmag = 0.05 config_visc4_2dsmag = 0.05 config_scalar_advection = true config_monotonic = true config_coef_3rd_order = 0.25 config_epssm = 0.1 config_epssm = 0.1 config_smdiv = 0.1 config_del4u_div_factor = 10.

Configuring the dynamics

Dissipation

$v_4 (m^4/s) = \Delta x^3 x \operatorname{config_visc4_2dsmag}$

The dissipation options are not applied to the scalar integration. MPAS V8 relies on the monotonic limiter to filter the scalars. We anticipate activating these options for scalars in a future release

For the horizontal momentum: $v_{4,D} (m^4/s) = v_4 x \text{ config_del4u_div_factor}$ Hidden in the MPAS V8 namelist.atmosphere config_del4u_div_factor = 10 (default)

NCAR UCAR

Configuring the dynamics <u>Dissipation</u>

The dissipation options are not applied to the scalar integration. MPAS V8 relies on the monotonic limiter to filter the scalars.

2d_fixed option is used primarily in idealized cases.

Spatial Discretization in MPAS references

Dynamics

Skamarock, W. C, J. B. Klemp, M. G. Duda, L. Fowler, S.-H. Park, and T. D. Ringler, 2012: A Multiscale Nonhydrostatic Atmospheric Model Using Centroidal Voronoi Tesselations and C-Grid Staggering. Mon. Wea. Rev., 140, 30903105. doi:10.1175/MWR-D-11-00215.1

<u>Transport</u>

Skamarock, W. C. and A. Gassmann, 2011: Conservative Transport Schemes for Spherical Geodesic Grids: High-Order Flux Operators for ODE-Based Time Integration. Mon. Wea. Rev., 139, 2562-2575, doi:10.1175/MWR-D-10-05056.1

